
Heidelberg University SS 2025

Quantum field theory in curved spacetime
Assignment 9/Exam 2 – June 30

Please hand in this assignment before the tutorial at 14h15AM on June 30. In total, you need to
obtain 40% of the combined points from the first and this exam.

Exercise 19: Euler-Heisenberg Lagrangian on a background of constant curvature

Motivation: Two weeks ago, we computed the full Euler-Heisenberg Lagrangian on a flat background. This time, we
include background curvature and use heat kernels as we learned last week, and only consider the first corrections
in curvature and electromagnetic field. We’ll find that nonminimal coupling of electromagnetism to gravity is
unavoidable!

The Euler-Heisenberg effective action on a curved background satisfies

ei�[A,g] = eiSEH [A,g]

Z
D ̄D eiSQED[A,g], (19.1)

with the QED action on a curved background and the Einstein-Hilbert action
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SEH =
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Z
d4x

p
�g (R� 2⇤) , (19.3)

respectively. Here, F ⌘ Fµ⌫F µ⌫/4, where Fµ⌫ is the field-strength tensor of the gauge field Aµ, and
R and ⇤ denote the Ricci scalar and the cosmological constant. Besides, /D denotes the covariant
Dirac operator involving the covariant derivative including the spin connection !µab

Dµ = (rµ + ieAµ) =
�
@µ + ieAµ � i!µab⌃

ab
�
 , (19.4)

where ⌃ab = i[�a, �b]/8 (note the different notation to exercise 16 where we used �ab = i[�a, �b]/2),
local Lorentz indices are Latin, spacetime indices Greek letters, and e and m are the charge and the
mass of the (Grassmann-valued) fermion  , respectively. For simplicity, we assume the background
electromagnetic field strength to be constant as two weeks ago.

(a) Discuss why a constant field strength necessarily means @cFab = 0, not @⇢Fµ⌫ = 0.

We want to compute the one-loop effective Lagrangian by integrating out the fermion. From
exercise 16, we know that we can express the one-loop contribution to the effective action of the
background fields as
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2
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for the Hamiltonian H = /D
2

.



(b) Two weeks ago, we just ignored the (infinite) constant contributions to the effective action.
Discuss whether we can still do that. What do they contribute to? Hereafter, we assume to
have dealt with those contributions successfully.

(c) Demonstrate that the Hamiltonian can be expressed as

H = D2 + 2eFab⌃
ab � R

4
. (19.7)

Hint: You can use without proof that the Lorentz generators satisfy the Lorentz algebra

[⌃ab,⌃cd] = i
�
⌘c[a⌃b]d � ⌘d[a⌃b]c

�
. (19.8)

Besides the Riemann tensor with Lorentz indices Rabcd = eµ
a
e⌫
b
Rµ⌫cd has the same symmetries

as the usual Riemann tensor, and satisfies the first Bianchi identity.

(d) Discuss why we can separate the traces as
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with Hkin = D2 � R

4
, and Hspin = 2eFab⌃ab We have already computed the spin trace in flat

space. Explain why this result remains valid and we can copy it to get

tr
�
e�sHspin

�
= 4 cos(esa) cosh(esb), (19.10)

where

a2 =
p
F2 + G2 � F , b2 =

p
F2 + G2 + F . (19.11)

As in exercise 16, here we defined G ⌘ FabF̃ ab/4, and the dual field strength F̃ ab = ✏abcdFcd/2.
Let me remind you that a = 0 if ~E = 0 and b = 0 if ~B = 0, so we can understand a to largely
measure electric contributions to the field strength, while b largely measures the magnetic
ones.

Time to compute tre�sHkin . Here, we get to the promised heat kernels. The cool thing about
the heat-kernel method is that it does not only work with the Levi-Civita connection; any gauge
connection will do. Like last week, we define

d

ds
K(x,x0, s) = �

�
D2 + E

�
K(x,x0, s), (19.12)

where for the moment Dµ = @µ + iAµ is some differential operator with a gauge connection Aµ

possibly having suppressed internal indices, while E is a so-called endomorphism – basically a
possibly matrix-valued function of the position like a potential, the Ricci scalar or Hspin (above
we took that out of the trace, but we can’t do so for inhomogeneous electromagnetic fields).
Under a gauge transformation U(x), the covariant derivative, the endomorphism and the metric
generally transform

Dµ ! DU

µ
= UDµU

�1, E ! EU = UEU�1, gµ⌫ ! gµ⌫
U

= Ugµ⌫U�1. (19.13)

If the gauge transformation concerns internal degrees of freedom, i. e. for all gauge transformations
but diffeomorphisms, [gµ⌫ , U ] = 0 such that gµ⌫

U
= gµ⌫ .



(e) Show that the operator KU = UKU�1 satisfies the heat equation with respect to the trans-
formed operator (DU)2 + EU . Discuss why this implies that

R p
�gd4xK(x, x, s) is a gauge

invariant quantity.

(f) Let’s go back to the specific case in this exercise. We make the ansatz

K(x, x, s) =
1

(4⇡s)2

1X

n=0

an(x)s
n. (19.14)

To order n = 1, we already computed the coefficients a0 = 1, a1 = R/6 last week. Explain
why there can’t be any new contributions from electromagnetism to that order.

(g) Write down the contributions containing the electromagnetic field strength you expect to
appear in a2 and a3. Explain what those contributions mean.
Hint: Follow the concept that everything that is not prohibited is compulsory.

(h) If electromagnetism is nonminimally coupled to gravity, there are a lot of new effects – for
example, photons need not move on null geodesics any more, they may perceive an effective
spacetime, which is not just governed by gµ⌫ . Explain why we do not measure these effects
even though they are presumably present.

(a) It is impossible to set @⇢Fµ⌫ = 0 in general because this equation is coordinate-dependent.
However, we are allowed to render a tensor covariantly constant by imposing

r⇢Fµ⌫ = 0. (19.15)

With a tetrad-compatible connection (as Levi-Civita), we can write this as

eµ
c
rµFab = eµ

c
@µFab = @cFab = 0, (19.16)

which implies Fab =const.
(b) Infinite constants are multiples of the volume of spacetime V. In the Einstein-Hilbert action, the

cosmological-constant term reads
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This is independent of the choice of background fields. Thus, constants in the effective action contribute
to the cosmological constant. In particular, infinite constants contribute to its renormalization.

(c) We compute directly

H =�a�beµ
a
e⌫
b
DµD⌫ , (19.18)
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=D2 � 2i⌃abeµ
a
e⌫
b
[Dµ, D⌫ ], (19.21)

where we used the anticommutation relations of the �-matrices, and the antisymmetry of ⌃ab. The
commutator of gauge covariant derivatives reads [Dµ, D⌫ ] = ieFµ⌫ + [rµ,r⌫ ], where the commutator of



covariant derivatives equals
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=� i⌃abRµ⌫ab. (19.25)

Contracting the commutator of covariant derivatives as in Eq. (19.21), we obtain

⌃abeµ
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b
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a
e⌫
b
Rµ⌫cd, (19.26)

=� i⌃ab⌃cdRabcd, (19.27)

=� i(⌃ab⌃cd + ⌃cd⌃ab)
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16
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=� i

8
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where we used the first Bianchi identity Ra[bcd] = 0. In total, we obtain the Hamiltonian

H = D2 + 2e⌃abFab �
R

4
. (19.31)

(d) The spin-interaction Hamiltonian is expressed solely in terms of Lorentz-group valued degrees
of freedom (it has only Latin indices). In the local Lorentz frame, the field strength is still constant.
Therefore, the spin-interaction Hamiltonian is position independent, and commutes with the kinetic
Hamiltonian. Therefore, as two weeks ago the trace only applies to spinor space, which in a local
Lorentz frame is clearly exactly the same as in flat Minkowski spacetime.

(e) First, we need to compute

(DU)2 = gµ⌫
U
DU

µ
DU

⌫
= Ugµ⌫U�1UDµU

�1UD⌫U
�1 = Ugµ⌫DµD⌫U

�1 = UD2U�1. (19.32)

Thus, the operator KU satisfies

d

ds
KU = U

d

ds
KU�1 = �U(D2 + E)KU�1 = �U(U�1[(DU)2 + E ]UU�1KUUU�1) = �[(DU)2 + EU ]KU .

(19.33)

The quantity trK =
R p

�gd4xK(x, x, s) is a trace of a gauge covariant operator. In other words, we
can write

trKU = tr(UKU�1) = tr(U�1UK) = tr(K). (19.34)

Therefore, trK is gauge invariant.
(f) As it is gauge-covariant and a spacetime scalar, the only possible contributions from electro-

magnetism have to be fully contracted combinations of field strengths (at least one) plus possibly the
curvature tensor and the epsilon tensor. Note that s has units of length2. To order n = 0, one would
need a dimensionless object, which we don’t have at hand. At order n = 1, we would need an object of
dimension length�2 like the field strength Fµ⌫ or the dual field strength F̃µ⌫ . However, these are both
antisymmetric. Therefore, they yield 0 when being contracted.

(g) The possible contributions to a2 have to be of dimension energy4, namely

a2 ⇠ c2,1F
µ⌫Fµ⌫ + c2,2F̃

µ⌫Fµ⌫ , (19.35)



for some coefficients c2,1 and c2,2. These are the ordinary electromagnetic Lagrangian and the topological
✓-term F̃ µ⌫Fµ⌫ . We cannot couple the (dual) field strength nonminimally at that order because the only
possible curvature tensor with two indices is the Ricci tensor, which is symmetric.

The possible contributions to a3 are of dimension energy6, yielding

a3 ⇠ c3,1F
µ⌫F ⇢�Rµ⌫⇢� + c3,2F

µ⌫F̃ ⇢�Rµ⌫⇢� + c3,3F̃
µ⌫F̃ ⇢�Rµ⌫⇢� + c3,4F

µ⌫Fµ⌫R + c3,5F
µ⌫F̃µ⌫R. (19.36)

Those are all allowed tensor structures due to the mentioned symmetries. All of these nonminimally
couple the photon to gravity.

(h) In order to obtain the corresponding contributions to the effective action, we still have to inte-
grate over the proper time with the Gaussian weight e�sm

2

. Neglecting, for simplicity, the contribution
stemming from the spin coupling (which does not change anything conceptual about the result), these
terms become Z
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To estimate the scaling of these terms, let’s choose the lightest fermion coupling to electromagnetism,
namely the electron. We know that a3 contains one power of the Riemann tensor. Using Einstein’s
equations, we can usually estimate that R ⇠ G⇢, where ⇢ is some measure of the energy density
involved. Thus, the contribution to the effective Lagrangian goes like

F 2⇢

M2

P
m2

, (19.38)

where F 2 is either F or G. In a background field, which is just at the threshold to produce electron-
positron pairs (this is already really large in astrophysical contexts), we have F 2 ⇠ m4 such that the
contribution reads

m2⇢

M2

P

. (19.39)

Compare this to the leading contributions to the matter Lagrangian. which simply go like ⇢, and relative
to which the non-minimal-coupling contributions go like

m2

M2

P

⇠ 10�40. (19.40)

Thus, the nonminimal coupling is highly suppressed in the astrophysical context.

Exercise 20: Weyl anomaly for a scalar field

Motivation: In the lecture, we already encountered the conformal anomaly for fermions. Now, we have a look at
scalar fields.

Consider a real scalar field � whose dynamics is governed by the action

S =
1
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Z
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p
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6

◆
. (20.1)

We know from assignment 2 that the action is invariant under the Weyl transformation

gµ⌫ ! g̃µ⌫ = ⌦(x)2gµ⌫ , �! �̃ = ⌦(x)�1�. (20.2)



In this exercise, we want to find out whether the conformal symmetry survives for a quantum
scalar field using Fujikawa’s method. The quantum scalar field is governed by the path integral

Z = ei� =

Z
D�eiS. (20.3)

As S is invariant, we have to look at the measure D�. Let’s put our system into a box of length
L. Then, the Weyl-invariant Klein-Gordon operator has a discrete spectrum, and we define its
eigenfunctions �n as ✓

⇤+
R

6

◆
�n = �n�n, (20.4)

where �n 2 R. These eigenfunctions are orthonormal and complete, i. e.
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X
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p
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Besides, they can be chosen such that they are real, i. e. �⇤

n
= �n, which we do hereafter. Thus,

we can express any field � included in the configuration space as

� =
X

n

cn�n (20.7)

for some set of coefficients cn.

(a) Define the path integral measure such that the effective action takes the form

� =
i

2
log detL2
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. (20.8)

This is what we want the effective action formally to look like.

(b) Demonstrate that after a Weyl transformation – we choose the �n such that Eq. (20.2) implies
�n ! �̃n = ⌦�1�n – the eigenfunctions are neither orthogonal nor normalized anymore.
Instead, show that the functions �⌦

n
= ⌦�1�̃n are orthonormal in the Weyl-transformed

spacetime.

(c) Consider the expansion
�̃ ⌘

X

n

c⌦
n
�⌦

n
. (20.9)

Construct the corresponding measure in the Weyl-transformed spacetime and show that the
two measures are related by a Jacobian

D� = D�̃ det
✓
@cn
@c⌦

n0

◆
, (20.10)

where the determinant is taken over the index space n, n0.

(d) Consider an infinitesimal transformation ⌦(x) = 1 + !(x). Compute the Jacobian. You
should obtain
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p
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(e) Define

Z⌦ = ei�
⌦ ⌘

Z
D�⌦eiS, (20.12)

to show that
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(f) Recall that the effective action is the quantum equivalent of an ordinary action. Analogously
to the derivation of the classical stress-energy tensor from the classical action, one can (you
don’t need to) show that
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Demonstrate that
hT µ

µ
(x)i = iL�2
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n
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(g) Discuss what happens if we naively apply the completeness relation, Eq. (20.6), to
Eq. (20.15). To resolve this issue will be the subject of the next assignment.

(a) By analogy with the derivation of the trace anomaly in the lecture we make the ansatz

D� = N
Y

n

dcn (20.16)

for some normalization constant N . We can rewrite the action as
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Then, the partition function reads
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Thus, we can express the effective action as
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where we used that the determinant of an operator amounts to the product of its eigenvalues. If we
choose the normalization to be N = 1/

p
�2⇡i, we indeed obtain
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The corresponding measure reads
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Y

n
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. (20.28)

(b) Under a Weyl transformation the orthogonality and normalization conditions transform as
Z
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Instead, the functions �⌦ are orthogonal
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and normalized
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(c) The analogous measure in the Weyl transformed spacetime reads

D�̃ =
Y

n

dc⌦
np

�2⇡i
. (20.33)

This is an integral over an infinite-dimensional space coordinatized by the c⌦
n
. In getting from D�, which

is coordinatized by cn, to D�̃, we have to change coordinates. Such a change of coordinates in an integral
is always accompanied by a Jacobian determinant. Thus,
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(d) The Weyl transformation gets us from � to �̃. We know that

�̃ =
X

n

cn�̃n. (20.35)



At the same time, we know that we can express the conformally transformed field in terms of orthonormal
functions as

�̃ =
X

n
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n
�⌦

n
. (20.36)

Setting these equal and dividing by ⌦, we get
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Using the orthogonality of �⌦

n
, we obtain
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For an infinitesimal transformation ⌦(x) = 1 + !(x), this becomes
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Finally, we can take the derivative to obtain
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(e) While the action depends on the cn, the Jacobian, Eq. (20.11), does not. Therefore we can write
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Therefore, we obtain
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which implies the second equality in Eq. (20.13).
Now we use that log det = tr log to write
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where we expanded to first order in the infinitesimal !. This implies the third equality in Eq. (20.13).
(f) The variation of the metric reads in our case

�gµ⌫ = �2!gµ⌫ , (20.46)

such that
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It immediately follows from Eq. (20.13) that
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µ
i = iL�2

X
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n
(x). (20.48)

(g) Naively applying the completeness relation to Eq. (20.15), we obtain

hT µ

µ
i = iL�2

�(0)
p
g
, (20.49)

which is clearly divergent. This sum requires regularization and renormalization.

Extra material 2: Heat-kernel renormalization

Let’s try to make sense of Eq. (20.13) which I reprint here
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We can clearly rewrite
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Exchanging sum and limit is generally not allowed. Here, we define the divergent expression
Eq. (21.2) via this exchange modulo counterterms X and understand �n = Lhx|�ni (position
representation of an eigenstate of the Weyl-invariant Klein-Gordon operator)a to obtain
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Going to Euclidean signature (recall that �E = �i�), we find
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The sum is a heat kernel, and we can use the Seeley-de Witt expansion

X

n

�ne
s(�+R/6)�n =

X

n

hx|�nih�n|es(�+R/6)|xi = L2K(x, x, s) =
L2

(4⇡s)2

1X

n=0

ans
n, (21.5)

Clearly, the contributions at orders n = 0, 1 are divergent and have to be subtracted off such that

XE = L2

Z
d4x

p
�g!

a0 + a1s

(4⇡s)2
. (21.6)

As a result, we obtain

��E =
1

(4⇡)2

Z
d4x

p
�g!a2. (21.7)

Going back to Lorentzian signature, the Euclidean heat kernel becomes a Lorentzian heat kernel

�� = � i

(4⇡)2

Z
d4x

p
�g!E2. (21.8)



Now using Eq. (20.14), we finally obtain the trace anomaly

hT µ

µ
i = i

(4⇡)2
E2(x). (21.9)

The heat kernel coefficient E2 is quadratic in the curvature tensors (Riemann as well as field
strength tensors). This result is independent of the size of the box

aNote that we need a factor of L here because |xi has units of [L�2] to make
R
d4x

p
�g|xihx| dimensionless,

and to satisfy the orthogonality relation, Eq. (20.5).


